Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 709
Filtrar
1.
J Hazard Mater ; 470: 134227, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581879

RESUMO

Phosphate-mineralizing bacteria (PMBs) have been widely studied by inducing phosphate heavy metal precipitation, but current researches neglect to study their effects on soil-microbe-crop systems on cadmium (Cd) contaminated. Based on this, a strain PMB, Enterobacter sp. PMB-5, was inoculated into Cd contaminated pots to detect soil characteristics, Cd occurrence forms, soil biological activities, plant physiological and biochemical indicators. The results showed that the inoculation of strain PMB-5 significantly increased the available phosphorus content (85.97%-138.64%), Cd-residual fraction (11.04%-29.73%), soil enzyme activities (31.94%-304.63%), plant biomass (6.10%-59.81%), while decreased the state of Cd-HOAc (11.50%-31.17%) and plant bioconcentration factor (23.76%-44.24%). These findings indicated that strain PMB-5 could perform the function of phosphorus solubilization to realize the immobilization of Cd in the complex soil environment. Moreover, SEM-EDS, FTIR, XPS, and XRD analysis revealed that strain PMB-5 does not significantly alter the soil morphology, structure, elemental distribution, and chemical composition, which suggested that remediation of Cd contamination using strain PMB-5 would not further burden the soil. This research implies that PMB-5 could be a safe and effective bioinoculant for remediating Cd-contaminated soils, contributing to the sustainable management of soil health in contaminated environments.


Assuntos
Biodegradação Ambiental , Cádmio , Enterobacter , Fósforo , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Enterobacter/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Fósforo/metabolismo , Fósforo/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Solo/química
2.
Appl Environ Microbiol ; 90(3): e0224523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38319098

RESUMO

Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.


Assuntos
Enterobacter , Hifas , Enterobacter/genética , Enterobacter/metabolismo , Hifas/metabolismo , Fenilacetatos/metabolismo , Rhizoctonia/genética
3.
Environ Sci Technol ; 58(9): 4204-4213, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373240

RESUMO

Arsenic (As) is widely present in the environment, and virtually all bacteria possess a conserved ars operon to resist As toxicity. High selenium (Se) concentrations tend to be cytotoxic. Se has an uneven regional distribution and is added to mitigate As contamination in Se-deficient areas. However, the bacterial response to exogenous Se remains poorly understood. Herein, we found that As(III) presence was crucial for Enterobacter sp. Z1 to develop resistance against Se(IV). Se(IV) reduction served as a detoxification mechanism in bacteria, and our results demonstrated an increase in the production of Se nanoparticles (SeNPs) in the presence of As(III). Tandem mass tag proteomics analysis revealed that the induction of As(III) activated the inositol phosphate, butanoyl-CoA/dodecanoyl-CoA, TCA cycle, and tyrosine metabolism pathways, thereby enhancing bacterial metabolism to resist Se(IV). Additionally, arsHRBC, sdr-mdr, purHD, and grxA were activated to participate in the reduction of Se(IV) into SeNPs. Our findings provide innovative perspectives for exploring As-induced Se biotransformation in prokaryotes.


Assuntos
Arsênio , Arsenitos , Selênio , Selênio/farmacologia , Selênio/metabolismo , Ácido Selenioso/farmacologia , Ácido Selenioso/metabolismo , Enterobacter/metabolismo , Oxirredução
4.
J Hazard Mater ; 465: 133206, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134692

RESUMO

Soil arsenic (As) phytoremediation has long faced the challenge of efficiently absorbing As by plant accumulators while maintaining their health and fast growth. Even at low doses, arsenic is highly toxic to plants. Therefore, plant growth-promoting microorganisms that can mediate As accumulation in plants are of great interest. In this study, the endophyte Enterobacter sp. YG-14 (YG-14) was found to have soil mobilization activity. By constructing a siderophore synthesis gene deletion mutant (ΔentD) of YG-14, the endophyte was confirmed to effectively mobilize Fe-As complexes in mining soil by secreting enterobactin, releasing bioavailable Fe and As to the rhizosphere. YG-14 also enhances As accumulation in host plants via extracellular polymer adsorption and specific phosphatase transfer protein (PitA) absorption. The root accumulation of As was positively correlated with YG-14 root colonization. In addition, YG-14 promoted plant growth and alleviated oxidative damage in R. pseudoacacia L. under arsenic stress. This is the first study, from phenotype, physiology, and molecular perspectives, to determine the role of endophyte in promoting As phytostabilization and maintaining the growth of the host plant. This demonstrated the feasibility of using endophytes with high siderophore production to assist host plants in As phytoremediation.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/metabolismo , Enterobacter/metabolismo , Sideróforos/metabolismo , Endófitos , Plantas/metabolismo , Solo , Biodegradação Ambiental , Poluentes do Solo/metabolismo
5.
J Hazard Mater ; 465: 133284, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134699

RESUMO

The phosphate-mineralizing bacteria (PMBs) has shown great potential as a sustainable solution to support pollution remediation through its induced mineralization capacity. However, few studies have been conducted on the mechanism of cadmium (Cd) tolerance in PMBs. In this study, a PMB strain, Enterobacter sp. PMB-5, screened from Cd-contaminated rhizosphere soil, has high resistance to Cd (540 - 1220 mg/L) and solubilized phosphate (232.08 mg/L). The removal experiments showed that the strain PMB-5 removed 71.69-98.24% and 34.83-76.36% of Cd with and without biomineralization, respectively. The characterization result of SEM, EDS, TEM, XPS and XRD revealed that PMB-5 induced Cd to form amorphous phosphate precipitation through biomineralization and adopted different survival strategies, including biomineralization, bioaccumulation, and biosorption to resistance Cd in the microbial induced phosphate precipitation (MIPP) system and the non-MIPP system, respectively. Moreover, the results of whole genome sequencing and qRT-PCR indicated that phosphorus metabolism genes such as pst, pit, phn, ugp, ppk, etc. and heavy metal tolerance genes (including ion transport, ion efflux, redox, antioxidant stress), such as czcD, zntA, mgtA, mgtC, katE, SOD2, dsbA, cysM, etc. were molecular for the PMB-5 mineralization and Cd tolerance of PMB-5. Together, our findings suggested Enterobacter sp. PMB-5 is a potential target for developing more effective bioinoculants for Cd contamination remediation.


Assuntos
Enterobacter , Poluentes do Solo , Enterobacter/metabolismo , Cádmio/metabolismo , Biomineralização , Fosfatos , Bioacumulação , Poluentes do Solo/metabolismo , Solo
6.
Environ Pollut ; 336: 122513, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673320

RESUMO

Enterobacter sp. are widely used in bioremediation, but the mechanism of Cadmium (Cd) toxicity in Enterobacter sp. has been poorly studied. In the present study, we determined the tolerance of Enterobacter sp. FM-1 to Cd by analyzing the physiological and biochemical responses of FM-1 induced under Cd stress. Differentially expressed proteins (DEPs) under exposure to different Cd environments were analyzed by 4D-label-free proteomics to provide a comprehensive understanding of Cd toxicity in FM-1. The greatest total number of DEPs, 1148, was found in the High concentration vs. Control comparison group at 10 h. When protein expression was compared after different incubation times, FM-1 showed the highest Cd tolerance at 48 h. Additionally, with an increasing incubation time, different comparison groups gradually began to show similar growth patterns, which was reflected in the GO enrichment analysis. Notably, only 815 proteins were identified in the High concentration vs. Control group, and KEGG enrichment analysis revealed that these proteins were significantly enriched in the pyruvate metabolism, oxidative phosphorylation, peroxisome, glyoxylate and dicarboxylate metabolism, and citrate cycle pathways. These results suggested that an increased incubation time allows FM-1 adapt and survive in an environment with Cd toxicity, and protein expression significantly increased in response to oxidative stress in a Cd-contaminated environment during the pre-growth period. This study provides new perspectives on bacterial participation in bioremediation and expands our understanding of the mechanism of bacterial resistance under Cd exposure.


Assuntos
Cádmio , Enterobacter , Cádmio/toxicidade , Cádmio/metabolismo , Enterobacter/metabolismo , Proteômica , Estresse Oxidativo , Biodegradação Ambiental
7.
Chemosphere ; 340: 139815, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586489

RESUMO

In this study, a novel oil-degrading strain Enterobacter kobei DH7 was isolated from petroleum-contaminated soil samples from the industrial park in Taolin Town, Lianyungang, China. The whole genome of the strain was sequenced and analyzed to reveal its genomic potential. The oil degradation and growth conditions including nitrogen, and phosphorus sources, degradation cycle, biological dosing, pH, and oil concentration were optimized to exploit its commercial application. The genome of the DH7 strain contains 4,705,032 bp with GC content of 54.95% and 4653 genes. The genome analysis revealed that there are several metabolic pathways and enzyme-encoding genes related to oil degradation in the DH7 genome, such as the paa gene cluster which is involved in the phenylacetic acid degradation pathway, and complete degradation pathways for fatty acid and benzoate, genes related to chlorinated alkanes and olefins degradation pathway including adhP, frmA, and adhE, etc. The strain DH7 under the optimized conditions has demonstrated a maximum degradation efficiency of 84.6% after 14 days of treatment using synthetic oil, which comparatively displays a higher oil degradation efficiency than any Enterobacter species known to date. To the best of our knowledge, this study presents the first-ever genomic studies related to the oil degradation potential of any Enterobacter species. As Enterobacter kobei DH7 has demonstrated significant oil degradation potential, it is one of the good candidates for application in the bioremediation of oil-contaminated environments.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/análise , Enterobacter/genética , Enterobacter/metabolismo , Genômica , Solo/química , Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo/análise , Hidrocarbonetos/metabolismo
8.
J Hazard Mater ; 458: 132033, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453352

RESUMO

Metagenomics analysis was performed to determine the effects of Enterobacter sp. FM-1 (FM-1) on key genera as well as functional genes in the rhizosphere of Bidens pilosa L. (B. pilosa L.). Moreover, metabolomics was used to reveal the differences among rhizosphere metabolites after FM-1 inoculation. FM-1 inoculation significantly increased the activity of enzymes associated with the carbon cycle in soil; among them, invertase activity increased by 5.52 units compared to a control. Specifically, the relative abundance of beneficial genera increased significantly, such as Lysobacter (0.45-2.58 unit increase) in low-contamination soils (LC) and Pseudomonas (31.17-45.99 unit increase) in high-contamination soils (HC). Comparison of different transformation processes of the C cycle revealed that inoculation of FM-1 increased the abundance of functional genes related to the carbon cycle in LC soil. In contrast, the nitrogen cycling pathway was significantly elevated in both the LC and HC soils. FM-1 inoculation reduced HM resistance gene abundance in the rhizosphere soil of B. pilosa L. in the LC soil. Moreover, FM-1 and B. pilosa L. interactions promoted the secretion of rhizosphere metabolites, in which lipids and amino acids played important roles in the phytoremediation process. Overall, we explored the rhizosphere effects induced by plantmicrobe interactions, providing new insights into the functional microbes and rhizosphere metabolites involved in phytoremediation.


Assuntos
Bidens , Metais Pesados , Poluentes do Solo , Rizosfera , Solo/química , Enterobacter/metabolismo , Metagenômica , Poluentes do Solo/metabolismo , Metais Pesados/metabolismo , Biodegradação Ambiental , Metabolômica , Microbiologia do Solo , Cádmio/análise
9.
Prep Biochem Biotechnol ; 53(9): 1143-1153, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36840506

RESUMO

Sponges forms association with many bacteria that serve as sources of new bioactive compounds. The compounds are produced in response to environmental and nutritional conditions of the environment that enable them to protect their host from colonization. In this study, three sponge bacterial endophytes were isolated, identified, and subjected to solvent extraction processes. The identified bacteria are Bacillus amyloquifaciens, Bacillus paramycoides, and Enterobacter sp. The bacteria were cultured in two different fermentation media with varying nutritional composition for the extraction process. The extracts were evaluated for antibacterial and antibiofilm activity against microfouling bacteria and the chemical composition of each extract was analyzed via gas chromatography-mass spectrometry (GC-MS). The extract from the endophytes shows varying antibacterial and antibiofilm activity against the tested strains. Several compounds were detected from the extracts including some with known antibacterial/antibiofilm activity. The results showed variations in activity and secondary metabolite production between the extracts obtained under different nutritional composition of the media. In conclusion, this study indicated the role of nutrient composition in the activity and secondary metabolites production by bacteria associated with sponge Also, this study confirmed the role of sponge bacterial endophytes as producers of bioactive compounds with potential application as antifouling (AF) agents.


Assuntos
Antibacterianos , Endófitos , Endófitos/metabolismo , Antibacterianos/química , Enterobacter/metabolismo , Extratos Vegetais/química , Biofilmes , Testes de Sensibilidade Microbiana
10.
Environ Res ; 220: 115240, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621544

RESUMO

In order to solve nitrogen pollution in environmental water, two heterotrophic nitrifying and aerobic denitrifying strains isolated from acid paddy soil were identified as Achromobacter sp. strain HNDS-1 and Enterobacter sp. strain HNDS-6 respectively. Strain HNDS-1 and strain HNDS-6 exhibited amazing ability to nitrogen removal. When (NH4)2SO4, KNO3, NaNO2 were used as nitrogen resource respectively, the NH4+-N, NO3--N, NO2--N removal efficiencies of strain HNDS-1 were 93.31%, 89.47%, and 100% respectively, while those of strain HNDS-6 were 82.39%, 96.92%, and 100%. And both of them could remove mixed nitrogen effectively in low C/N (C/N = 5). Strain HNDS-1 could remove 76.86% NH4+-N and 75.13% NO3--N. And strain HNDS-6 can remove 65.07% NH4+-N and 78.21% NO3--N. A putative ammonia monooxygenase, nitrite reductase, nitrate reductase, assimilatory nitrate reductase, nitrate/nitrite transport protein and nitric oxide reductase of strain HNDS-1, while hydroxylamine reductase, nitrite reductase, nitrate reductase, assimilatory nitrate reductase, nitrate/nitrite transport protein, and nitric oxide reductase of strain HNDS-6 were identified by genomic analysis. DNA-SIP analysis showed that genes Nxr, narG, nirK, norB, nosZ were involved in nitrogen removal pathway, which indicates that the denitrification pathway of strain HNDS-1 and strain HNDS-6 was NO3-→NO2-→NO→N2O→N2 during NH4+-N removal process. And the nitrification pathway of strain HNDS-1 and strain HNDS-6 was NO2-→NO3-, but the nitrification pathway of NH4+→ NO2- needs further studies.


Assuntos
Achromobacter , Desnitrificação , Enterobacter , Nitrificação , Achromobacter/genética , Achromobacter/metabolismo , Aerobiose/genética , Aerobiose/fisiologia , Desnitrificação/genética , Desnitrificação/fisiologia , Enterobacter/genética , Enterobacter/metabolismo , Nitratos/metabolismo , Nitrificação/genética , Nitrificação/fisiologia , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Dióxido de Nitrogênio/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-36429532

RESUMO

Enterobacter xiangfangensis is a novel, multidrug-resistant pathogen belonging to the Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes. However, there is currently no registered E. xiangfangensis drug on the market that has been shown to be effective. Hence, there is an urgent need to identify novel therapeutic targets and effective treatments for E. xiangfangensis. In the current study, a bacterial pan genome analysis and subtractive proteomics approach was employed to the core proteomes of six strains of E. xiangfangensis using several bioinformatic tools, software, and servers. However, 2611 nonredundant proteins were predicted from the 21,720 core proteins of core proteome. Out of 2611 nonredundant proteins, 372 were obtained from Geptop2.0 as essential proteins. After the subtractive proteomics and subcellular localization analysis, only 133 proteins were found in cytoplasm. All cytoplasmic proteins were examined using BLASTp against the virulence factor database, which classifies 20 therapeutic targets as virulent. Out of these 20, 3 cytoplasmic proteins: ferric iron uptake transcriptional regulator (FUR), UDP-2,3diacylglucosamine diphosphatase (UDP), and lipid-A-disaccharide synthase (lpxB) were chosen as potential drug targets. These drug targets are important for bacterial survival, virulence, and growth and could be used as therapeutic targets. More than 2500 plant chemicals were used to molecularly dock these proteins. Furthermore, the lowest-binding energetic docked compounds were found. The top five hit compounds, Adenine, Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin demonstrated optimum binding against all three target proteins. Furthermore, molecular dynamics simulations and MM/GBSA analyses validated the stability of ligand-protein complexes and revealed that these compounds could serve as potential E. xiangfangensis replication inhibitors. Consequently, this study marks a significant step forward in the creation of new and powerful drugs against E. xiangfangensis. Future studies should validate these targets experimentally to prove their function in E. xiangfangensis survival and virulence.


Assuntos
Proteínas de Bactérias , Enterobacter , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterobacter/genética , Enterobacter/metabolismo , Genoma Bacteriano , Difosfato de Uridina
12.
Arch Microbiol ; 204(11): 662, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198868

RESUMO

Enterobacter species are responsible for causing infections of the lower respiratory tract, urinary tract, meninges, etc. Proteins secreted by these species may act as determinants of host-pathogen interaction and play a role in virulence. Among the secreted proteins, the Type VI secretion system (T6SS) acts as a molecular nanomachine to deliver many effector proteins directly into prey cells in a contact-dependent manner. The secreted proteins may provide an idea for the interaction of bacteria to their environment and an understanding of the role of these proteins for their role in bacterial physiology and behaviour. Therefore, aim of this study was to characterize the secreted proteins in the culture supernatant by a T6SS bacterium Enterobacter sp. S-33 using nano-LC-MS/MS tool. Using a combined mass spectrometry and bioinformatics approach, we identified a total of 736 proteins in the secretome. Bioinformatics analysis predicting subcellular localization identified 110 of the secreted proteins possessed signal sequences. By gene ontology analysis, more than 80 proteins of the secretome were classified into biological or molecular functions. More than 20 percent of secretome proteins were virulence proteins including T6SS proteins, proteins involved in adherence and fimbriae formation, molecular chaperones, outer membrane proteins, serine proteases, antimicrobial, biofilm, exotoxins, etc. In summary, the results of the present study of the S-33 secretome provide a basis for understanding the possible pathogenic mechanisms and future investigation by detailed experimental approach will provide a confirmation of secreted virulence proteins in the exact role of virulence using the in vivo model.


Assuntos
Sistemas de Secreção Tipo VI , Proteínas de Bactérias/metabolismo , Enterobacter/genética , Enterobacter/metabolismo , Exotoxinas/metabolismo , Proteínas de Membrana/metabolismo , Sinais Direcionadores de Proteínas , Secretoma , Serina Proteases/metabolismo , Espectrometria de Massas em Tandem , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Virulência
13.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080348

RESUMO

Nitrate-reducing iron(II) oxidation (NRFO) has been intensively reported in various bacteria. Iron(II) oxidation is found to be involved in both enzymatic and chemical reactions in nitrate-reducing Fe(II)-oxidizing microorganisms (NRFOMs). However, little is known about the relative contribution of biotic and abiotic reactions to iron(II) oxidation for the common nitrate reducers during the NRFO process. In this study, the typical nitrate reducers, four Enterobacter strains E. hormaechei, E. tabaci, E. mori and E. asburiae, were utilized as the model microorganisms. The comparison of the kinetics of nitrate, iron(II) and nitrite and N2O production in setups with and without iron(II) indicates a mixture of enzymatic and abiotic oxidation of iron(II) in all four Enterobacter strains. It was estimated that 22-29% of total oxidized iron(II) was coupled to microbial nitrate reduction by E. hormaechei, E. tabaci, E. mori, and E. asburiae. Enterobacter strains displayed an metabolic inactivity with heavy iron(III) encrustation on the cell surface in the NRFOmedium during days of incubation. Moreover, both respiratory and periplasmic nitrate-reducing genes are encoded by genomes of Enterobacter strains, suggesting that cell encrustation may occur with periplasmic iron(III) oxide precipitation as well as the surface iron(II) mineral coating for nitrate reducers. Overall, this study clarified the potential role of nitrate reducers in the biochemical cycling of iron under anoxic conditions, in turn, re-shaping their activity during denitrification because of cell encrustation with iron(III) minerals.


Assuntos
Ferro , Nitratos , Enterobacter/genética , Enterobacter/metabolismo , Compostos Ferrosos , Ferro/metabolismo , Minerais/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Óxidos de Nitrogênio , Oxirredução
14.
Antimicrob Agents Chemother ; 66(9): e0050622, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35950843

RESUMO

Bacteriophages and bacteriophage-derived peptidoglycan hydrolases (endolysins) present promising alternatives for the treatment of infections caused by multidrug resistant Gram-negative and Gram-positive pathogens. In this study, Gp105, a putative lysozyme murein hydrolase from Enterobacter phage myPSH1140 was characterized in silico, in vitro as well as in vivo using the purified protein. Gp105 contains a T4-type lysozyme-like domain (IPR001165) and belongs to Glycoside hydrolase family 24 (IPR002196). The putative endolysin indeed had strong antibacterial activity against Gram-negative pathogens, including E. cloacae, K. pneumoniae, P. aeruginosa, S. marcescens, Citrobacter sp., and A. baumannii. Also, an in vitro peptidoglycan hydrolysis assay showed strong activity against purified peptidoglycans. This study demonstrates the potential of Gp105 to be used as an antibacterial protein to combat Gram-negative pathogens.


Assuntos
Bacteriófagos , N-Acetil-Muramil-L-Alanina Amidase , Antibacterianos/farmacologia , Bacteriófagos/metabolismo , Endopeptidases/metabolismo , Enterobacter/metabolismo , Glicosídeo Hidrolases/metabolismo , Klebsiella pneumoniae/metabolismo , Muramidase/farmacologia , Myoviridae/metabolismo , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/metabolismo
15.
Curr Microbiol ; 79(9): 252, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834125

RESUMO

An active microbial community of nitrifying and denitrifying bacteria is needed for efficient utilization of nitrogenous compounds from wastewater. In this study, we explored the bacterial community diversity and structure within rivers, treated and untreated wastewater treatment plants (WWTPs) discharging into Lake Victoria. Water samples were collected from rivers and WWTPs that drain into Lake Victoria. Physicochemical analysis was done to determine the level of nutrients or pollutant loading in the samples. Total community DNA was extracted, followed by Illumina high throughput sequencing to determine the total microbial community and abundance. Enrichment and isolation were then done to recover potential nitrifiers and denitrifiers. Physicochemical analysis pointed to high levels total nitrogen and ammonia in both treated and untreated WWTPs as compared to the samples from the lake and rivers. A total of 1,763 operational taxonomic units (OTUs) spread across 26 bacterial phyla were observed with the most dominant phylum being Proteobacteria. We observed a decreasing trend in diversity from the lake, rivers to WWTPs. The genus Planktothrix constituted 19% of the sequence reads in sample J2 collected from the lagoon. All the isolates recovered in this study were affiliated to three genera: Pseudomonas, Klebsiella and Enterobacter in the phylum Proteobacteria. A combination of metagenomic analysis and a culture-dependent approach helped us understand the relative abundance as well as potential nitrifiers and denitrifiers present in different samples. The recovered isolates could be used for in situ removal of nitrogenous compounds from contaminated wastewater.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Lagos , Águas Residuárias/microbiologia , Purificação da Água , Bactérias/classificação , Bactérias/isolamento & purificação , Desnitrificação , Enterobacter/classificação , Enterobacter/crescimento & desenvolvimento , Enterobacter/metabolismo , Quênia , Klebsiella/classificação , Klebsiella/crescimento & desenvolvimento , Klebsiella/isolamento & purificação , Klebsiella/metabolismo , Lagos/química , Lagos/microbiologia , Nitrificação , Proteobactérias/classificação , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Pseudomonas/classificação , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Rios/microbiologia , Águas Residuárias/química
16.
Environ Pollut ; 309: 119775, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35843452

RESUMO

While biogenic Mn oxides (BioMnOx) generated by Mn(II)-oxidizing bacteria (MOB) have attracted increasing attention, a MOB strain isolated from Mn-polluted sediments was identified and assigned as Enterobacter hormaechei DS02Eh01. Its Mn(II) immobilization activity, plant growth-promoting traits, and biofilm formation capability were investigated. The results showed that strain DS02Eh01 was found to be able to tolerate Mn(II) up to 122 mM. The strain immobilized Mn(II) in aquatic media mainly through extracellular adsorption, bio-oxidation and pH-induced precipitation as well as manganese oxidation. DS02Eh01-derived BioMnOx are negatively charged and have a larger specific surface area (86.70 m2/g) compared to the previously reported BioMnOx. The strain can immobilize Mn(II) at extreme levels, for instance, when it was exposed to 20 mM Mn(II), about 59% of Mn(II) were found immobilized and 17% of Mn(II) were converted to MnOx. The SEM and TEM observation revealed that the DS02Eh01-derived BioMnOx were aggregates doped with granules and microbial pellets. The precipitated Mn(II) and the Mn(III)/Mn(IV) oxides co-existed in BioMnOx, in which Mn(II) and Mn(IV) were found dominant with Mn(II) accounting for 49.6% and Mn(IV) accounting for 41.3%. DS02Eh01 possesses plant growth-promoting traits and biofilm formation capacity even under Mn(II) exposure. Mn(II) exposure at 5 mM was found to stimulate strain DS02Eh01 to form biofilms, from which, the extracted EPS was mainly composed of aromatic proteins. This study reveals that E. hormaechei strain DS02Eh01 possesses the potential in environmental ecoremediation via coupling processes of macrophytes extraction, biochemical immobilization and biosorption.


Assuntos
Compostos de Manganês , Manganês , Biofilmes , Enterobacter/metabolismo , Manganês/metabolismo , Oxirredução , Óxidos/metabolismo
17.
Braz J Microbiol ; 53(3): 1339-1344, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690653

RESUMO

New Delhi metallo-ß-lactamase (NDM)-producing Enterobacterales was first detected in Brazil in 2014, in a Providencia rettgeri isolate recovered from surveillance swabs in the Southern region. Since then, an increasing number of NDM enzymes have been reported in different species. Nevertheless, comprehensive data on the current epidemiology of NDM-producing Enterobacterales in Brazil are lacking. Therefore, this study reviewed the available information on the status of NDM-producing bacteria in Brazil. The main finding was the diversity of bacteria producing NDM, including Klebsiella, Enterobacter, Morganella, Proteus, Escherichia, and Providencia. Limited data on clonality are available, but a few studies report different clonal backgrounds in NDM-producing K. pneumoniae, likely indicating local outbreaks. Over the years, a rise in the number of reported strains in different locations has been verified; however, different biases may have contributed to this finding. Therefore, a national surveillance study is warranted to identify the actual prevalence and incidence of NDM-producing Enterobacterales in Brazil and their role in patient management and outcome.


Assuntos
Enterobacter , beta-Lactamases , Antibacterianos/farmacologia , Brasil/epidemiologia , Enterobacter/genética , Enterobacter/metabolismo , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
18.
Microbiol Spectr ; 10(3): e0207821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35647691

RESUMO

Many species of bacteria change their morphology and behavior under external stresses. In this study, we report transient elongation and swimming motility of a novel Enterobacter sp. strain, SM1_HS2B, in liquid broth under a standard growth condition. When growing in the Luria-Bertani medium, HS2B cells delay their cell division and elongate. Although transient over a few hours, the average cell length reaches over 10 times that of the stationary-state cells. The increase is also cumulative following repeated growth cycles stimulated by taking cells out of the exponential phase and adding them into fresh medium every 2 hours. The majority of the cells attain swimming motility during the exponential growth phase, and then they lose swimming motility over the course of several hours. Both daughter cells due to division of a long swimming cell retain the ability to swim. We confirm that the long HS2B cells swim with rigid-body rotation along their body axis. These findings based on microscopic observation following repeated cycles of growth establish HS2B as a prototype strain with sensitive dependence of size and motility on its physical and biochemical environment. IMPORTANCE Bacteria undergo morphological changes in order to cope with external stresses. Among the best-known examples are cell elongation and hyperflagellation in the context of swarming motility. The subject of this report, SM1_HS2B, is a hyperswarming strain of a newly identified species of enterobacteria, noted as Enterobacter sp. SM1. The key finding that SM1_HS2B transiently elongates to extreme length in fresh liquid medium offers new insights on regulation in bacterial growth and division. SM1_HS2B also manifests transient but vigorous swimming motility during the exponential phase of growth in liquid medium. These properties establish HS2B as a prototype strain with sensitive dependence of size and motility on its physical and biochemical environment. Such a dependence may be relevant to swarming behavior with a significant environmental or physiological outcome.


Assuntos
Enterobacter , Flagelos , Proteínas de Bactérias/genética , Divisão Celular , Enterobacter/genética , Enterobacter/metabolismo , Flagelos/metabolismo
19.
Microbiol Spectr ; 10(2): e0266021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35377224

RESUMO

Phenylpyruvate decarboxylase (PPDC) is a crucial enzyme that plays important roles in 2-phenylethanol (2-PE) biosynthesis. In our previous study, we screened a highly efficient PPDC KDC4427 from the novel 2-PE-producing strain Enterobacter sp. CGMCC 5087. Meanwhile, its decarboxylation activity of indolylpyruvate (IPyA) was also higher than other indolylpyruvate decarboxylases (IPDCs) reported so far. In this study, KDC4427 protein was purified and characterized, and its catalytic mechanisms were analyzed by biological methods. The optimum pH and temperature of KDC4427 was pH 6.5 and 35°C, respectively. The enzyme activity was relatively stable between pH 6 and 8 and over the range of temperatures from 25°C to 45°C. KDC4427 showed the highest catalytic efficiency on phenylpyruvic acid (PPA); meanwhile, it also showed high activity for IPyA and 2-ketobutanoic acid, and it was found that KDC4427 belongs to IPDCs by phylogenetic tree analysis. The coverage of the three-dimensional structure of KDC4427 and EcIPDC from Enterobacter cloacae was 96%. Leucine 542, one of the residues in the substrate-binding pocket, is replaced by isoleucine in KDC4427 compared with EcIPDC. Site-directed mutagenesis showed that the transition from leucine to isoleucine was unlikely to make KDC4427 have high catalytic activity for PPA and IPyA; the mutants at glutamate 468 almost completely lost catalytic activities for both PPA and IPyA, indicating that this glutamate was essential for the catalytic activity. Additionally, alanine 387 plays an important role in the substrate selectivity of KDC4427. IMPORTANCE Compared with the chemical synthesis of 2-phenylethanol (2-PE) by condensation of ethylene oxide and benzene, the biological synthesis of 2-PE is a potential method to replace the traditional process. This makes biotransformation gradually become the main way to produce high-quality 2-PE. Phenylpyruvate decarboxylase (PPDC) is the critical enzyme in 2-PE biosynthesis, and it is a momentous point of penetration to increase the production of 2-PE. In this regard, KDC4427 can catalyze phenylpyruvic acid (PPA) to phenylacetaldehyde more efficiently than any other PPDC previously reported. Moreover, it has high activity of indolepyruvate decarboxylases (IPDCs), which will be a great breakthrough in the synthesis of indole-3-acetic acid (IAA). With this study, we offer insights into the KDC4427 catalytic mechanism and significantly expand the toolbox of available α-ketoacid decarboxylases for application in biosynthesis.


Assuntos
Carboxiliases , Álcool Feniletílico , Carboxiliases/química , Carboxiliases/genética , Carboxiliases/metabolismo , Enterobacter/genética , Enterobacter/metabolismo , Glutamatos , Ácidos Indolacéticos , Isoleucina , Leucina , Filogenia
20.
Chemosphere ; 298: 134196, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35276103

RESUMO

The important role of microbes in the biomineralization and migration behavior of uranium in the field of environmental chemistry has been well emphasized in previous work. However, limited work on mineralization processes of indigenous microorganism has prevented us from a deeper understanding of the process and mechanisms of uranium biomineralization. In this work, the dynamic process and mechanism of uranium biomineralization in Enterobacter sp. X57, a novel uranium-tolerant microorganism separated from uranium contaminated soil, were systematically investigated. Enterobacter sp. X57 can induce intracellular mineralization of U (VI) to Uramphite (NH4UO2PO4·3H2O) under neutral conditions by alkaline phosphatase. In this biomineralization process, soluble U (VI) first bonded with the amino and phosphate groups on the plasma membrane, providing initial nucleation site for the formation of U (VI) biominerals. Then the impairment of cell barrier function and the enhancement of alkaline phosphatase metabolism occurred with the accumulation of uranium in cells, creating a possible pathway for soluble U (VI) to diffuse into the cell and be further mineralized into U (VI)-phosphate minerals. All the results revealed that the intracellular biomineralization of uranium by Enterobacter sp. X57 was a combined result of biosorption, intracellular accumulation and phosphatase metabolism. These findings may contribute to a better understanding of uranium biomineralization behavior and mechanism of microorganisms, as well as possible in-situ bioremediation strategies for uranium by indigenous microorganisms.


Assuntos
Urânio , Fosfatase Alcalina/metabolismo , Biodegradação Ambiental , Biomineralização , Enterobacter/metabolismo , Fosfatos/metabolismo , Urânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...